Barrientos, A. F., Bolton, A., Balmat, T., Reiter, J. P., Figueiredo, J. M. de, Machanavajjhala, A., … DeLong, M. (2017). A framework for sharing confidential research data, applied to investigating differential pay by race in the us government. arXiv Preprint arXiv:1705.07872.

Burgette, L. F., & Reiter, J. P. (2010). Multiple imputation for missing data via sequential regression trees. American Journal of Epidemiology, 172(9), 1070–1076.

Carey, M. P. (2011). Senior executive service: Background and options for reform. DIANE Publishing.

Collins, L. M., Schafer, J. L., & Kam, C.-M. (2001). A comparison of inclusive and restrictive strategies in modern missing data procedures. Psychological Methods, 6(4), 330.

Doove, L. L., Van Buuren, S., & Dusseldorp, E. (2014). Recursive partitioning for missing data imputation in the presence of interaction effects. Computational Statistics & Data Analysis, 72, 92–104.

Guide to the senior executive service. (2017), 2–12.

He, Y., & Zaslavsky, A. M. (2012). Diagnosing imputation models by applying target analyses to posterior replicates of completed data. Statistics in Medicine, 31(1), 1–18.

Huddleston, M. W., & Boyer, W. W. (1996). The higher civil service in the united states: Quest for reform (pp. 116–117). University of Pittsburgh Pre.

Little, R. J., & Rubin, D. B. (2014). Statistical analysis with missing data. John Wiley & Sons.

Office of Personal Management (OPM). (n.d.). Pay & leave. Retrieved from

Powell, G. N., & Butterfield, D. A. (1994). Investigating the “glass ceiling” phenomenon: An empirical study of actual promotions to top management. Academy of Management Journal, 37(1), 68–86.

Statement of Jeffrey D. Zients, U.S. Congress, Senate Committee on Homeland Security and Governmental Affairs, Subcommittee on Oversight of Government Management, the Federal Workforce, and the District of Columbia. (2011), 1.

Walther, G. (2017). Lecture 17: Smoothing splines, Local Regression, and GAMs.

Zhou, X., & Reiter, J. P. (2010). A note on bayesian inference after multiple imputation. The American Statistician, 64(2), 159–163.