Bacanu, S.-A., & Kendler, K. S. (2013). Extracting actionable information from genome scans. Genetic Epidemiology, 37(1), 48–59.

Benjamin, D. J., Berger, J. O., Johannesson, M., Nosek, B. A., Wagenmakers, E.-J., Berk, R., … others. (2017). Redefine statistical significance. Nature Human Behaviour.

Bigdeli, T. B., Lee, D., Webb, B. T., Riley, B. P., Vladimirov, V. I., Fanous, A. H., … Bacanu, S.-A. (2016). A simple yet accurate correction for winner’s curse can predict signals discovered in much larger genome scans. Bioinformatics, 32(17), 2598–2603.

Dawid, A. (1994). Selection paradoxes of bayesian inference. Lecture Notes-Monograph Series, 211–220.

Ferguson, J. P., Cho, J. H., Yang, C., & Zhao, H. (2013). Empirical bayes correction for the winner’s curse in genetic association studies. Genetic Epidemiology, 37(1), 60–68.

Ghosh, A., Zou, F., & Wright, F. A. (2008). Estimating odds ratios in genome scans: An approximate conditional likelihood approach. The American Journal of Human Genetics, 82(5), 1064–1074.

Jiang, W., & Yu, W. (2016). Power estimation and sample size determination for replication studies of genome-wide association studies. BMC Genomics, 17(1), 19.

Panigrahi, S., Taylor, J., & Weinstein, A. (2016). Bayesian post-selection inference in the linear model. arXiv Preprint arXiv:1605.08824.

Phelan, C. M., Kuchenbaecker, K. B., Tyrer, J. P., Kar, S. P., Lawrenson, K., Winham, S. J., … others. (2017). Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer. Nature Genetics, 49(5), 680.

Schildkraut, J. M., Goode, E. L., Clyde, M. A., Iversen, E. S., Moorman, P. G., Berchuck, A., … Garcia-Closas, M. (2009). Single nucleotide polymorphisms in the tp53 region and susceptibility to invasive epithelial ovarian cancer. Cancer Research, 69(6), 2349–2357.

Schildkraut, J. M., Iversen, E. S., Wilson, M. A., Clyde, M. A., Moorman, P. G., Palmieri, R. T., … Berchuck, A. (2010). Association between dna damage response and repair genes and risk of invasive serous ovarian cancer. PLoS One, 5(4), e10061.

Sellke, T., Bayarri, M., & Berger, J. O. (2001). Calibration of \(\rho\) values for testing precise null hypotheses. The American Statistician, 55(1), 62–71.

Storey, J. D., & Tibshirani, R. (2003). Statistical significance for genomewide studies. Proceedings of the National Academy of Sciences, 100(16), 9440–9445.

Sun, L., Dimitromanolakis, A., Faye, L. L., Paterson, A. D., Waggott, D., Bull, S. B., … others. (2011). BR-squared: A practical solution to the winner’s curse in genome-wide scans. Human Genetics, 129(5), 545–552.

Xu, L., Craiu, R. V., & Sun, L. (2011). Bayesian methods to overcome the winner’s curse in genetic studies. The Annals of Applied Statistics, 5, 201–231.

Xu, S. (2003). Theoretical basis of the beavis effect. Genetics, 165(4), 2259–2268.

Zhong, H., & Prentice, R. L. (2008). Bias-reduced estimators and confidence intervals for odds ratios in genome-wide association studies. Biostatistics, 9(4), 621–634.

Zöllner, S., & Pritchard, J. K. (2007). Overcoming the winner’s curse: Estimating penetrance parameters from case-control data. The American Journal of Human Genetics, 80(4), 605–615.